中文字幕第二一区_久久久久在线视频_精品国产自在现线看久久_亚洲精品一区二区三区电影网

產品分類

當前位置: 首頁 > 工業控制產品 > 自動化控制 > 激光器

類型分類:
科普知識
數據分類:
激光器

突破鴻溝,科學家發明室溫下的太赫茲激光器

發布日期:2022-10-09 點擊率:75

科學家發明室溫下的太赫茲激光器


據報道,這種世界上第一款室溫太赫激光器利用相當于光學外差法的技術來彌合太赫鴻溝。目前,太赫鴻溝存在于大多數半導體激光無法工作的地方,在微波波長(厘米波)和光波長(微米波)之間,其間是毫米波——太赫。


目前,在太赫茲頻率工作的唯一激光器是超冷卻量子級聯激光器(QCL)。最近,QCL的共同發明人(1944年在貝爾實驗室)、哈佛大學教授Federico Capasso已經證明,把在想要的太赫頻率上的、空間分隔的、兩個易于產生的光學頻率,在非線性材料中利用外差法注入進行混合,就可以得到室溫下的太赫激光器。


“這種非線性光學材料的有趣特征在于,當由兩個頻率激發時,它們的要素分子會連貫地振動,不僅僅在稱為‘泵頻’的驅動頻率上,而且在它們的差頻上,”哈佛大學教授Federico Capasso說道,“因此,在材料的輸出上,你不僅僅可以觀察到泵頻的光線,而且能夠觀察到差頻的光線,這個過程類似于在無線電中廣為采用的超外插原理。”


通過選擇易于在室溫產生的光學波長,但是,其頻差嚴格等于想要的太赫頻率,Capasso和哈佛研究協會的Mikhail Belkin回避了太赫鴻溝所存在的問題,獲得了工作在室溫的太赫激光器。Capasso的研究小組所采用的兩個光學激光器在室溫下被證明頻率分別為33.7-THz (8.9-微米波)和28.5-THz (10.5微米波),它們產生的差頻為5.2 THz。


“基本上,電子在這個頻率被驅動至完全同相振蕩,因此,產生相干太赫發射,”Capasso表示,“該器件的結構是紅外線雙中頻QCL以及非線性材料這兩者相結合,從而差生頻率差。因為兩個紅外線中頻是在室溫下產生的,它們的頻差顯然也是在室溫下產生的。以這種方式,我們成功地突破了THz QCL的極限,以前的器件迄今為止僅僅工作在低溫條件下。”


太赫掃描儀就像X射線一樣工作,但是,它的功率水平對于使用它的周圍的人來說是完全安全的。利用太赫掃描儀,機場可以檢測出隱藏在衣服中的武器,以及在行李中的有害和有毒物質。太赫激光器也可以被用于遠程監測在空氣中漂浮的有害氣體,從而為在一定距離上辨別臨時放置好的爆炸設備提供一種潛在的解決方案。


量子阱階梯


傳統的激光器給電子注入能量,然后,從半導體的導帶激發出一個中子,使之跳躍至價帶。相比之下,量子級聯激光器安排一個量子阱階梯,每一個處于漸變的較低能級,從而允許電子沿著能量階梯級聯下來,在每一個階梯上發射一顆中子。目前,量子級聯激光器如果不做過冷處理就無法在太赫頻段工作。然而,通過采用超外差架構,哈佛的研究人員證明,兩個量子級聯激光器的混合輸出可以覆蓋太赫茲頻段。


在非線性光學領域,超外差原理就是著名的差頻產生(DFG)技術。當光線撞擊非線性材料時,它們的行為就像線性諧振子一樣,只有當頻率匹配它們的自己的內部自然諧振頻率時才會振蕩。另一方面,像真空管和晶體管這樣的非線性器件可以被制成在兩個輸入的合頻以及差頻上諧振,從而允許無線電在各個頻帶之間搬移信號,或者,對信號進行編解碼。


其它研究人員已經證明了利用DFG實現太赫激光的可行性,但是,要采用碩大的外部“泵”激光來證明其原理。哈佛大學的研究小組利用半導體材料完成了這個任務,如果一切進展順利,最終將以廉價實現室溫下器件的大規模生產。


“我們的器件在一個微型半導體晶體上完成了一切,不需要利用碩大的外部激光做泵源,因此,優點在于緊湊、便攜、低功耗,”Capasso表示,“實際上,器件的材料被設計和生長為當偏置電流作用在它上面時,激光器不僅僅發射出所產生的兩個不同的紅外線中頻,而且以相應的差頻產生相干輻射,在我們的情形下,就是在5太赫茲。”


這種非線性器件像混頻(產生合頻與差頻)那樣工作的機制取決于所采用的材料。量子級聯激光器在制造過程中采用了分子束外延,從鎵和鋁構成的輪換層上一次制成原子層。每一層原子層均比它前面的一層稍薄。


下一步,哈佛的研究人員計劃最優化它們的設計,以努力把輸出功率從目前的納瓦級提高至幾個毫瓦。其中,一種解決方案就是把熱電冷卻裝置加入到激光器的襯底上,因為激光工作溫度越低,輸出功率越大。其次,該小組計劃把半導體材料的邊緣發射轉換為表面發射。


“我們的方法將極大地增加用于發射的表面積,”Capasso說道,“通過制成一種合適的光柵,由它垂直地把器件有源區產生的太赫茲輻射分散,就可以實現表面輻射。”


Belkin和Capasso的研究工作得到了Texas A&M大學的研究人員Feng Xie和Alexey Belyanin、以及瑞士蘇黎世的ETH大學的研究人員Milan Fischer、Andreas Wittmann和Jrme Faist等人的協作。研究資金由美國Air Force Office of Scientific Research、國家科學基金以及兩個基于哈佛的研究中心、美國納米級科學和工程中心以及美國國家納米科技基礎設施網絡下屬的納米級系統中心等單位提供。


翻頁查看英文原文:




Room-temperature terahertz laser invented


What's claimed to be the world's first room-temperature terahertz laser harnesses the optical equivalent of heterodyning to bridge the terahertz gap. Today, a terahertz-gap exists where most semiconductor lasers fail to operate--between microwave wavelengths (centimeters) and optical wavelengths (microns). In between are the millimeter wavelengths--terahertz frequencies (1-10 THz).


The only semiconductor lasers that run at terahertz frequencies today are supercooled quantum cascade lasers (QCL). Now, the co-inventor of the QCL (while at Bell Labs in 1994), professor Federico Capasso at Harvard University, has demonstrated a heterodyning method cast in nonlinear materials that mixes two easy-to-generate optical frequencies spaced apart at the desired terahertz frequency, resulting in a room-temperature terahertz laser.


"This class of nonlinear optical materials has the interesting property that, when illuminated by two frequencies, their constituent molecules vibrate coherently, not only at the driving frequencies, known as 'pump' frequencies, but also at their difference frequency," said Harvard professor, Federico Capasso. "As a result, at the output of the material one not only observes light at the pump frequencies, but also at the difference frequency--a process similar to the heterodyne principle widely used in radio."


By choosing optical wavelengths that are easy to generate at room temperature--but whose difference is exactly the desired terahertz frequency--Capasso and Harvard research associate Mikhail Belkin sidestepped the terahertz-gap problem, resulting in a terahertz laser that operates at room temperature. The two optical lasers used by Capasso's group in its room-temperature demonstration were at 33.7-THz (8.9-micron wavelength) and 28.5-THz (10.5-micron wavelength), which produced a difference frequency of 5.2 THz.


"Basically, electrons are driven to oscillate all in phase at this frequency, thus producing coherent terahertz emission," said Capasso. "The device structure is both a two frequency mid-infrared QCL and a nonlinear material, which generates the frequency difference. Since the two mid-infrared frequencies are generated at room temperature, their difference obviously is, as well. In this way we have circumvented the limitation of THz QCLs, which operate so far only at cryogenic temperatures."


Terahertz scanners act like x-rays, but at power levels that are completely safe to use around people. Using a terahertz scanner, airports could detect hidden weapons under clothing, as well as hazardous and toxic materials inside luggage. Terahertz lasers could also remotely detect hazardous gases floating in the air, offering a potential solution to identifying improvised explosive devices from a distance.


A stair-step of quantum wells


Conventional lasers energize electrons, which then emit a single photon by jumping from the semiconductor's conduction band to its valence band. Quantum cascade lasers, on the other hand, arrange a stair-step of quantum wells--each at a progressively lower energy level--that allow electrons to cascade down an energy staircase, emitting a photon at each step. Today, quantum cascade lasers lose their ability to work in the terahertz gap without supercooling. But by using a heterodyning architecture, the Harvard researchers demonstrated twin quantum cascade lasers, whose mixed output is in the terahertz gap.


The heterodyning principle is well known in nonlinear optics as difference frequency generation (DFG). Most materials act like linear harmonic oscillators when light impinges on them, oscillating only when the frequency matches their own internal natural resonant frequency. Nonlinear materials like vacuum tubes and transistors, on the other hand, can be made to resonate at the sum and difference frequencies of two inputs, enabling radios to move signals between bands, or to encode and decode them.


Others have demonstrated the feasibility of terahertz lasers using DFG, but bulky external "pump" lasers were used just to prove the principle. The Harvard group accomplished the task with semiconductor materials that, if all goes well, eventually could be mass produced for inexpensive room-temperature devices.


"Our device does everything in one small semiconductor crystal with no need for bulky external lasers for pumping; hence, the advantages of compactness, portability and low power consumption," said Capasso. "In essence, the material of the device is designed and grown so that when a bias current is applied to it, not only are laser beams emitting at two different mid-infrared frequencies generated, but also coherent radiation at the difference frequency corresponding, in our case, to 5 Terahertz".


The mechanism by which nonlinear devices perform operations like mixing--generating sum and difference frequencies--depends on the materials used. The quantum cascade laser is fabricated using molecular-beam epitaxy, a layer of atoms at a time, from alternating layers of gallium and aluminum. Each layer is slightly thinner than the one before it.


Next, the Harvard researchers plan to optimize their design in an attempt to increase the output power to milliwatts, from its nanowatt levels today. One way is to add low-cost thermoelectric coolers to the laser's substrate--since the cooler the laser runs, the higher its output power. Secondly, the group plans to switch from edge emission to surface emission for their semiconductor material.


"Our approach will be to greatly increase the surface area used for emission," said Capasso. "Surface emission will be achieved by fabricating a suitable grating to scatter vertically the terahertz radiation generated in the device's active region."


Belkin and Capasso performed the work in cooperation with researchers Feng Xie and Alexey Belyanin, at Texas A&M University (College Station), and researchers Milan Fischer, Andreas Wittmann, and Jrme Faist, at ETH (Zurich, Switzerland). Funding was provided by the Air Force Office of Scientific Research, the National Science Foundation and two Harvard-based centers, the Nanoscale Science and Engineering Center and the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.




下一篇: PLC、DCS、FCS三大控

上一篇: 恩智浦半導體混合PCTV

推薦產品

更多
中文字幕第二一区_久久久久在线视频_精品国产自在现线看久久_亚洲精品一区二区三区电影网

      9000px;">

          国产伦精品一区二区三区免费迷| 一区二区三区四区高清精品免费观看| 国产成人亚洲综合色影视| 夜夜亚洲天天久久| 亚洲欧美日韩国产中文在线| 中文天堂在线一区| 国产日韩欧美精品电影三级在线| 9191成人精品久久| 欧美日韩国产一二三| 91久久精品一区二区三| 欧美在线一区二区| 91久久精品日日躁夜夜躁欧美| 成人性生交大片免费看中文| 国产酒店精品激情| 国产精品一区三区| 风间由美性色一区二区三区| 国产不卡视频在线观看| 成人免费观看视频| 99热精品一区二区| 色婷婷亚洲一区二区三区| 91久久国产最好的精华液| 欧美最猛黑人xxxxx猛交| 欧美高清视频在线高清观看mv色露露十八 | 99久久99久久久精品齐齐| 99九九99九九九视频精品| 91传媒视频在线播放| 欧美日韩国产在线播放网站| 欧美tickle裸体挠脚心vk| 国产欧美日韩亚州综合| 综合色中文字幕| 午夜精品久久久久久久久久久| 亚洲h在线观看| 国产在线视视频有精品| 99国产精品久久久久久久久久久| 欧美午夜宅男影院| 久久午夜老司机| 亚洲另类在线视频| 麻豆精品新av中文字幕| 97精品电影院| 欧美一区二区三区不卡| 国产精品欧美一区二区三区| 亚洲超丰满肉感bbw| 国产麻豆精品在线| 欧美日韩一区二区三区四区五区 | 一区二区高清免费观看影视大全 | 2023国产一二三区日本精品2022| 国产精品久久久久四虎| 蜜桃视频第一区免费观看| 成人免费视频一区| 欧美一区二区高清| 中文字幕亚洲综合久久菠萝蜜| 午夜精品久久久久久久久| 国产白丝精品91爽爽久久| 69堂精品视频| 亚洲视频1区2区| 精品一区二区在线观看| 欧美日韩亚洲综合在线| 国产精品久久久久久久久免费相片| 天堂一区二区在线| 99精品欧美一区二区三区综合在线| 日韩欧美成人一区| 亚洲成人免费电影| 91色视频在线| 国产精品麻豆视频| 国产成人在线影院| 久久亚洲综合色一区二区三区| 天天亚洲美女在线视频| 欧美伊人久久久久久久久影院| 国产精品你懂的| 懂色av中文字幕一区二区三区| 日韩一区二区视频| 婷婷综合在线观看| 欧美三级日韩在线| 亚洲综合男人的天堂| 91麻豆免费观看| 日韩毛片一二三区| 99国产一区二区三精品乱码| 中文字幕乱码久久午夜不卡| 国产一区亚洲一区| 国产亚洲欧美激情| 国产精品中文字幕欧美| 久久新电视剧免费观看| 国内精品第一页| 欧美精品一区二区三区在线| 久久不见久久见免费视频1| 日韩午夜电影av| 久草这里只有精品视频| 精品粉嫩超白一线天av| 国产美女精品人人做人人爽| 久久精品夜色噜噜亚洲a∨| 国产精品 欧美精品| 欧美激情在线观看视频免费| 国产91精品精华液一区二区三区| 中文字幕va一区二区三区| 波多野结衣欧美| 亚洲蜜臀av乱码久久精品| 在线观看日韩毛片| 日韩精品欧美成人高清一区二区| 91精品国产乱| 国产福利精品一区| 亚洲蜜臀av乱码久久精品蜜桃| 欧美三级日韩在线| 精品一区二区三区在线观看国产 | 日日噜噜夜夜狠狠视频欧美人| 欧美精品乱人伦久久久久久| 久久精品二区亚洲w码| 国产精品视频一二三| 一本一本大道香蕉久在线精品 | 欧美精品一区二区久久婷婷 | 99国产精品国产精品久久| 亚洲精品视频在线观看网站| 欧美高清视频一二三区| 国产精品资源在线| 亚洲一卡二卡三卡四卡无卡久久| 欧美一区二区播放| av不卡免费在线观看| 日本亚洲最大的色成网站www| 日韩欧美久久一区| av高清不卡在线| 捆绑变态av一区二区三区| ...xxx性欧美| 精品免费国产一区二区三区四区| 91在线国产观看| 美女性感视频久久| 一区二区视频免费在线观看| 精品奇米国产一区二区三区| 99久久99久久精品国产片果冻| 日韩电影免费在线| 中文字幕日本不卡| 日韩欧美另类在线| 欧美综合欧美视频| 国产成人精品免费网站| 日韩在线观看一区二区| 最新中文字幕一区二区三区| 欧美成人一区二区三区片免费 | 捆绑调教美女网站视频一区| 亚洲美女免费在线| 国产调教视频一区| 91精品国产免费| 欧美日韩精品一区二区在线播放| 国产成人一级电影| 激情综合色综合久久| 有码一区二区三区| 亚洲国产精品国自产拍av| 日韩午夜精品电影| 8v天堂国产在线一区二区| 91色乱码一区二区三区| 国产不卡在线视频| 蜜桃久久久久久久| 午夜免费久久看| 亚洲一级二级三级在线免费观看| 国产精品网曝门| 日本一区二区三区久久久久久久久不| 制服丝袜中文字幕一区| 国产麻豆视频精品| 激情五月婷婷综合网| 日本不卡高清视频| 国产精品不卡视频| 欧美国产在线观看| 久久久久久久综合色一本| 日韩丝袜美女视频| 精品少妇一区二区三区在线视频| 91精品国产品国语在线不卡| 不卡高清视频专区| 日韩av一区二区三区四区| 91福利资源站| 日本不卡123| 久久九九99视频| jlzzjlzz亚洲女人18| 亚洲国产高清aⅴ视频| 91精品婷婷国产综合久久| 狠狠色伊人亚洲综合成人| 在线视频一区二区三| 欧美成人aa大片| 欧美一级理论片| 欧美zozo另类异族| 久久久综合激的五月天| 久久午夜电影网| 国产午夜一区二区三区| 久久久www免费人成精品| 久久久久久久久久久黄色| 久久久久久久久久久久久夜| 国产精品网站一区| 中文字幕亚洲一区二区av在线| 国产精品久久久久久久久免费相片 | 99久久婷婷国产精品综合| 成人黄色一级视频| 色成人在线视频| 91精品国产色综合久久ai换脸 | 国内精品伊人久久久久av影院 | 国产高清在线观看免费不卡| 国产成+人+日韩+欧美+亚洲| 99精品国产91久久久久久| 91成人网在线| 欧美一区二区啪啪| 国产无人区一区二区三区| 亚洲女子a中天字幕| 日本视频在线一区| 成人午夜精品在线| 欧美理论电影在线|