中文字幕第二一区_久久久久在线视频_精品国产自在现线看久久_亚洲精品一区二区三区电影网

產品分類

當前位置: 首頁 > 工業電子產品 > 無源元器件 > 電容

類型分類:
科普知識
數據分類:
電容

投射式電容觸摸屏電磁干擾問題的解決方案

發布日期:2022-10-09 點擊率:156

【導讀】開發具有觸摸屏人機界面的移動手持設備是一項復雜的設計挑戰,尤其是對于投射式電容觸摸屏設計來說更是如此,它代表了當前多點觸摸界面的主流技術。


投射式電容觸摸屏能夠精確定位手指輕觸屏幕的位置,它通過測量電容的微小變化來判別手指位置。在此類觸摸屏應用中,需要考慮的一個關鍵設計問題是電磁干擾 (EMI)對系統性能的影響。干擾引起的性能下降可能對觸摸屏設計產生不利影響,本文將對這些干擾源進行探討和分析。

 

1 投射式電容觸摸屏結構

 

典型的投射式電容傳感器安裝在玻璃或塑料蓋板下方。圖1所示為雙層式傳感器的簡化邊視圖。發射(Tx)和接收(Rx)電極連接到透明的氧化銦錫 (ITO),形成交叉矩陣,每個Tx-Rx結點都有一個特征電容。Tx ITO位于Rx ITO下方,由一層聚合物薄膜或光學膠(OCA)隔開。如圖所示,Tx電極的方向從左至右,Rx電極的方向從紙外指向紙內。

 

投射式電容觸摸屏電磁干擾問題的解決方案

圖1:傳感器結構參考。

 

2 傳感器工作原理

 

讓我們暫不考慮干擾因素,來對觸摸屏的工作進行分析:操作人員的手指標稱處在地電勢。Rx通過觸摸屏控制器電路被保持在地電勢,而Tx電壓則可變。變化的 Tx電壓使電流通過Tx-Rx電容。一個仔細平衡過的Rx集成電路,隔離并測量進入Rx的電荷,測量到的電荷代表連接Tx和Rx的“互電容”。

 

3 傳感器狀態:未觸摸

 

圖2顯示了未觸摸狀態下的磁力線示意圖。在沒有手指觸碰的情況下,Tx-Rx磁力線占據了蓋板內相當大的空間。邊緣磁力線投射到電極結構之外,因此,術語“投射式電容”由之而來。

 

投射式電容觸摸屏電磁干擾問題的解決方案

圖2:未觸摸狀態下的磁力線。

 

4 傳感器狀態:觸摸

 

當手指觸摸蓋板時,Tx與手指之間形成磁力線,這些磁力線取代了大量的Tx-Rx邊緣磁場,如圖3所示。通過這種方式,手指觸摸減少了Tx-Rx互電容。 電荷測量電路識別出變化的電容(△C),從而檢測到Tx-Rx結點上方的手指。通過對Tx-Rx矩陣的所有交叉點進行△C測量,便可得到整個面板的觸摸分 布圖。

 

圖3還顯示出另外一個重要影響:手指和Rx電極之間的電容耦合。通過這條路徑,電干擾可能會耦合到Rx。某些程度的手指-Rx耦合是不可避免的。

 

投射式電容觸摸屏電磁干擾問題的解決方案

圖3:觸摸狀態下的磁力線。

 

5 專用術語

 

投射式電容觸摸屏的干擾通過不易察覺的寄生路徑耦合產生。術語“地”通常既可用于指直流電路的參考節點,又可用于指低阻抗連接到大地:二者并非相同術語。 實際上,對于便攜式觸摸屏設備來說,這種差別正是引起觸摸耦合干擾的根本原因。為了澄清和避免混淆,我們使用以下術語來評估觸摸屏干擾。

 

?Earth(地):與大地相連,例如,通過3孔交流電源插座的地線連接到大地。

?Distributed Earth(分布式地):物體到大地的電容連接。

?DC Ground(直流地):便攜式設備的直流參考節點。

?DC Power(直流電源):便攜式設備的電池電壓。或者與便攜式設備連接的充電器輸出電壓,例如USB接口充電器中的5V Vbus。

?DC VCC(直流VCC電源):為便攜式設備電子器件(包括LCD和觸摸屏控制器)供電的穩定電壓。

?Neutral(零線):交流電源回路(標稱處在地電勢)。

?Hot(火線):交流電源電壓,相對零線施加電能。

 

6 LCD Vcom耦合到觸摸屏接收線路

 

便攜式設備觸摸屏可以直接安裝到LCD顯示屏上。在典型的LCD架構中,液晶材料由透明的上下電極提供偏置。下方的多個電極決定了顯示屏的多個單像素;上 方的公共電極則是覆蓋顯示屏整個可視前端的連續平面,它偏置在電壓Vcom。在典型的低壓便攜式設備(例如手機)中,交流Vcom電壓為在直流地和 3.3V之間來回震蕩的方波。交流Vcom電平通常每個顯示行切換一次,因此,所產生的交流Vcom頻率為顯示幀刷新率與行數乘積的1/2。一個典型的便 攜式設備的交流Vcom頻率可能為15kHz。圖4為LCD Vcom電壓耦合到觸摸屏的示意圖。

 

投射式電容觸摸屏電磁干擾問題的解決方案

圖4:LCD Vcom干擾耦合模型。

 

雙層觸摸屏由布滿Tx陣列和Rx陣列的分離ITO層組成,中間用電介質層隔開。Tx線占據Tx陣列間距的整個寬度,線與線之間僅以制造所需的最小間距隔 開。這種架構被稱為自屏蔽式,因為Tx陣列將Rx陣列與LCD Vcom屏蔽開。然而,通過Tx帶間空隙,耦合仍然可能發生。

 

為降低架構成本并獲得更好的透明度,單層觸摸屏將Tx和Rx陣列安裝在單個ITO層上,并通過單獨的橋依次跨接各個陣列。因此,Tx陣列不能在LCD Vcom平面和傳感器Rx電極之間形成屏蔽層。這有可能發生嚴重的Vcom干擾耦合情況。

 

7 充電器干擾

 

觸摸屏干擾的另一個潛在來源是電源供電手機充電器的開關電源。干擾通過手指耦合到觸摸屏上,如圖5所示。小型手機充電器通常有交流電源火線和零線輸入,但 沒有地線連接。充電器是安全隔離的,所以在電源輸入和充電器次級線圈之間沒有直流連接。然而,這仍然會通過開關電源隔離變壓器產生電容耦合。充電器干擾通 過手指觸摸屏幕而形成返回路徑。

 

投射式電容觸摸屏電磁干擾問題的解決方案

圖5:充電器干擾耦合模型。

 

注意:在這種情況下,充電器干擾是指設備相對于地的外加電壓。這種干擾可能會因其在直流電源和直流地上等值,而被描述成“共模”干擾。在充電器輸出的直流 電源和直流地之間產生的電源開關噪聲,如果沒有被充分濾除,則可能會影響觸摸屏的正常運行。這種電源抑制比(PSRR)問題是另外一個問題,本文不做討論。

 

8 充電器耦合阻抗

 

充電器開關干擾通過變壓器初級-次級繞組漏電容(大約20pF)耦合產生。這種弱電容耦合作用可以被出現在充電器線纜和受電設備本身相對分布式地的寄生并 聯電容補償。拿起設備時,并聯電容將增加,這通常足以消除充電器開關干擾,避免干擾影響觸摸操作。當便攜式設備連接到充電器并放在桌面上,并且操作人員的 手指僅與觸摸屏接觸時,將會出現充電器產生的一種最壞情況的干擾。

 

9 充電器開關干擾分量

 

典型的手機充電器采用反激式(flyback)電路拓撲。這種充電器產生的干擾波形比較復雜,并且隨充電器不同而差異很大,它取決于電路細節和輸出電壓控制策略。干擾振幅的變化也很大,這取決于制造商在開關變壓器屏蔽上投入的設計努力和單位成本。典型參數包括:

波形:包括復雜的脈寬調制方波和LC振鈴波形。頻率:額定負載下40~150kHz,負載很輕時,脈沖頻率或跳周期操作下降到2kHz以下。電壓:可達電源峰值電壓的一半=Vrms/√2。

 

10 充電器電源干擾分量

 

在充電器前端,交流電源電壓整流生成充電器高電壓軌。這樣,充電器的開關電壓分量疊加在一個電源電壓一半的正弦波上。與開關干擾相似,此電源電壓也是通過 開關隔離變壓器形成耦合。在50Hz或60Hz時,該分量的頻率遠低于開關頻率,因此,其有效的耦合阻抗相應更高。電源電壓干擾的嚴重程度取決于對地并聯 阻抗的特性,同時還取決于觸摸屏控制器對低頻的靈敏度。

 

投射式電容觸摸屏電磁干擾問題的解決方案

圖6:充電器波形實例。

 

電源干擾的特殊情況:不帶接地的3孔插頭

 

額定功率較高的電源適配器(例如筆記本電腦交流適配器),可能會配置3孔交流電源插頭。為了抑制輸出端EMI,充電器可能在內部把主電源的地引腳連接到輸 出的直流地。此類充電器通常在火線和零線與地之間連接Y電容,從而抑制來自電源線上的傳導EMI。假設有意使地連接存在,這類適配器不會對供電PC和 USB連接的便攜式觸摸屏設備造成干擾。圖5中的虛線框說明了這種配置。

 

對于PC和其USB連接的便攜式觸摸屏設備來說,如果具有3孔電源輸入的PC充電器插入了沒有地連接的電源插座,充電器干擾的一種特殊情況將會產生。Y電 容將交流電源耦合到直流地輸出。相對較大的Y電容值能夠非常有效地耦合電源電壓,這使得較大的電源頻率電壓通過觸摸屏上的手指以相對較低的阻抗進行耦合。

 

本文小結

 

當今廣泛用于便攜式設備的投射式電容觸摸屏很容易受到電磁干擾,來自內部或外部的干擾電壓會通過電容耦合到觸摸屏設備。這些干擾電壓會引起觸摸屏內的電荷 運動,這可能會對手指觸摸屏幕時的電荷運動測量造成混淆。因此,觸摸屏系統的有效設計和優化取決于對干擾耦合路徑的認識,以及對其盡可能地消減或是補償。

 

干擾耦合路徑涉及到寄生效應,例如:變壓器繞組電容和手指-設備電容。對這些影響進行適當的建模,可以充分認識到干擾的來源和大小。

 

對于許多便攜式設備來說,電池充電器構成觸摸屏主要的干擾來源。當操作人員手指接觸觸摸屏時,所產生的電容使得充電器干擾耦合電路得以關閉。充電器內部屏蔽設計的質量和是否有適當的充電器接地設計,是影響充電器干擾耦合的關鍵因素。

 

 

推薦閱讀:

 

適合 IoT 系統的電源轉換器,應該是這樣滴

基于玻璃通孔的射頻集成無源器件技術

Dialog和Apple通過技術授權協議、特定Dialog工程師加入Apple,強化合作關系

在功耗敏感型應用中利用高效率 超低功耗開關穩壓器為精密SAR ADC供電

新型開關穩壓器應對手持設備電源系統設計挑戰

下一篇: PLC、DCS、FCS三大控

上一篇: 三菱電機新型激光雷達

推薦產品

更多
中文字幕第二一区_久久久久在线视频_精品国产自在现线看久久_亚洲精品一区二区三区电影网

      9000px;">

          91成人在线观看喷潮| 国产剧情一区二区| 亚洲国产精品精华液2区45| 欧美久久久影院| 欧美系列一区二区| 91碰在线视频| 99久久国产综合精品色伊| 福利一区二区在线观看| 国产a久久麻豆| 丰满白嫩尤物一区二区| 成人免费精品视频| 波多野结衣一区二区三区 | 久久久久国产精品麻豆ai换脸| 欧美狂野另类xxxxoooo| 欧美精品精品一区| 欧美va在线播放| 久久久久综合网| 综合中文字幕亚洲| 亚洲特级片在线| 亚洲在线观看免费视频| 亚洲大片在线观看| 蜜桃传媒麻豆第一区在线观看| 免费成人在线影院| 国产精品一二三四区| eeuss国产一区二区三区| 色成年激情久久综合| 欧美三级电影在线看| 51久久夜色精品国产麻豆| 日韩免费性生活视频播放| 久久精品夜夜夜夜久久| 亚洲美女免费在线| 久久精品国产亚洲高清剧情介绍| 国产精品一区二区三区99| 99热在这里有精品免费| 3d成人动漫网站| 中文成人av在线| 日韩成人免费电影| av一区二区三区在线| 制服丝袜亚洲色图| 国产精品乱码人人做人人爱| 午夜成人在线视频| 丁香婷婷综合网| 欧美精品久久一区| 中文字幕在线播放不卡一区| 日本午夜精品一区二区三区电影| 国产麻豆精品久久一二三| 欧美亚洲愉拍一区二区| 国产精品视频九色porn| 日本va欧美va精品发布| 91免费观看视频在线| 2020国产精品| 午夜精品福利一区二区三区av| 国产成人av一区二区三区在线观看| 在线日韩国产精品| 国产精品美女久久久久高潮| 青草国产精品久久久久久| 色老综合老女人久久久| 久久久亚洲午夜电影| 蜜臀av一区二区三区| 色88888久久久久久影院按摩 | 国产91精品入口| 日韩欧美成人激情| 亚洲超丰满肉感bbw| 色哟哟亚洲精品| 国产精品国产自产拍高清av| 精品亚洲成av人在线观看| 欧美日韩在线亚洲一区蜜芽| 亚洲天堂av老司机| 成人蜜臀av电影| 国产欧美一二三区| 国产一区二区三区av电影| 5月丁香婷婷综合| 天天综合色天天综合| 在线视频亚洲一区| 一区二区成人在线| 欧美三级三级三级爽爽爽| 亚洲人成精品久久久久久| 成人av影视在线观看| 欧美国产一区视频在线观看| 久久99国产精品成人| 精品国产乱码久久久久久影片| 日韩中文字幕亚洲一区二区va在线| 欧美午夜影院一区| 日本在线不卡视频一二三区| 欧美日韩小视频| 日韩在线一二三区| 精品国产污网站| 国产麻豆精品在线观看| 国产欧美精品一区二区三区四区 | 一区二区三区av电影| 欧美特级限制片免费在线观看| 亚洲欧美日韩小说| 欧美三级在线播放| 久久精品国产精品亚洲红杏| 2023国产精品视频| 成人av在线资源网站| 亚洲妇女屁股眼交7| 日韩一区二区在线看| 精彩视频一区二区| 欧美国产精品中文字幕| 99久久精品99国产精品| 亚洲444eee在线观看| 精品欧美一区二区久久| 不卡av在线免费观看| 婷婷国产在线综合| 国产亚洲欧美一级| 欧美中文一区二区三区| 蜜臀国产一区二区三区在线播放| 国产亚洲欧美日韩在线一区| 欧美在线不卡视频| 久久国产人妖系列| 国产精品电影一区二区三区| 欧美色图在线观看| 国产成人午夜片在线观看高清观看| 亚洲视频一区二区免费在线观看| 91精品国产综合久久久蜜臀图片| 国产一区二区看久久| 亚洲一区二区三区在线看| 欧美精品一区二区三区蜜臀 | 亚洲 欧美综合在线网络| 国产亚洲欧美一区在线观看| 欧美亚洲一区二区在线| 性欧美大战久久久久久久久| 日韩欧美国产精品| 色综合久久综合网欧美综合网| 久久99国内精品| 婷婷综合五月天| 1000部国产精品成人观看| 欧美一区午夜视频在线观看| 色哟哟日韩精品| 处破女av一区二区| 黄色日韩三级电影| 日韩福利电影在线| 亚洲综合视频网| 亚洲卡通动漫在线| 亚洲国产精品成人综合| 日韩欧美一区二区三区在线| 色屁屁一区二区| 不卡欧美aaaaa| 成人av手机在线观看| 国产伦精品一区二区三区免费迷 | 日韩欧美国产不卡| 欧美日韩精品三区| 欧美日韩日日夜夜| 色综合久久久久| 99久久99久久久精品齐齐| 成人午夜在线视频| 成人黄动漫网站免费app| 国产乱人伦偷精品视频免下载| 裸体在线国模精品偷拍| 日韩av电影一区| 视频一区在线播放| 五月激情综合色| 午夜私人影院久久久久| 亚洲高清一区二区三区| 亚洲国产另类av| 日韩国产欧美在线视频| 天堂精品中文字幕在线| 蜜臀av亚洲一区中文字幕| 五月激情综合婷婷| 日韩主播视频在线| 国内不卡的二区三区中文字幕| 中文乱码免费一区二区| 国产精品乱人伦中文| 日韩美女视频19| 亚洲欧美日韩在线| 日韩制服丝袜先锋影音| 蜜桃在线一区二区三区| 国产在线播放一区三区四| 高清免费成人av| 91国偷自产一区二区三区成为亚洲经典| 91成人看片片| 欧美妇女性影城| 精品蜜桃在线看| 亚洲国产精品二十页| 一区二区三区中文字幕精品精品 | 九九热在线视频观看这里只有精品| 国产一区二区看久久| 91蝌蚪porny九色| 欧美日韩极品在线观看一区| 欧美tickling网站挠脚心| 中国av一区二区三区| 亚洲mv大片欧洲mv大片精品| 麻豆91在线播放| av午夜一区麻豆| 欧美精品欧美精品系列| 久久久国产精品麻豆| 亚洲美女屁股眼交| 精一区二区三区| 色综合久久综合| 久久精品日产第一区二区三区高清版| 自拍av一区二区三区| 久久99精品一区二区三区| 波多野结衣欧美| 欧美tickling挠脚心丨vk| 亚洲免费看黄网站| 国产福利一区二区三区| 欧美狂野另类xxxxoooo| 亚洲视频一二三| 国产乱人伦偷精品视频不卡|